Metal-Directed Synthesis of Enantiomerially Pure Dimetallic Lanthanide Luminescent Triple-Stranded Helicates

Floriana Stomeo, ${ }^{\dagger}$ Christophe Lincheneau, ${ }^{\dagger}$ Joseph P. Leonard, ${ }^{\dagger}$ John E. O’Brien, ${ }^{\dagger}$ Robert D. Peacock, ${ }^{\S}$ Colin P. McCoy, ${ }^{\ddagger}$ and Thorfinnur Gunnlaugsson*, ${ }^{\star}$
School of Chemistry, Center for Synthesis and Chemical Biology, Trinity College Dublin, Dublin 2, Ireland, School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, and Department of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K.

Received April 22, 2009; E-mail: gunnlaut @tcd.ie

The synthesis of novel architectures through the use of metaldirected synthesis and structurally defined ligands is of great current interest in supramolecular chemistry. ${ }^{1}$ To date, the use of transitionmetal ions to achieve such structures is well-documented. ${ }^{2}$ In contrast, while the use of lanthanides for sensing and imaging purposes is well-established, ${ }^{3}$ their use in metal-directed synthesis of supramolecular systems has been much less explored. ${ }^{4}$ However, some very elegant examples have recently been developed by Bünzli, ${ }^{5}$ Piquet, ${ }^{6}$ and several others. ${ }^{7}$ We have focused our research on the formation of such f-based supramolecular structures and recently demonstrated the formation of mixed $f-d$ metal ion selfassemblies, ${ }^{8}$ luminescent ternary complexes between sensitizing antennae and f-metal ions on gold nanoparticles, ${ }^{9}$ and the formation of highly ordered and chiral 1:3 metal/ligand self-assembled bundles using f-metal ions. ${ }^{10}$ Herein we describe the use of the chiral ligands $1(R, R)$ and $2(S, S)$ (shown in Scheme 1) to form the novel, enantiomerically pure, dinuclear triple-stranded helicates $\mathbf{E u}_{2}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}: \mathbf{2}_{3}$ via $\mathrm{Eu}(\mathrm{III})$-directed synthesis. These structures are, to the best of our knowledge, among the first examples of such highly stable, chiral dimetallic f-helicates ${ }^{11}$ that give rise to Eu(III)-centered circularly polarized luminescence (CPL) upon excitation of the naphthalene antennae.

Scheme 1. Synthesis of $1(R, R), 2(S, S)$, and the Corresponding Dinuclear Triple-Stranded Helicates $\mathrm{Eu}_{2}: 1_{3}$ and $\mathrm{Eu}_{2}: 2_{3}$

Ligands $\mathbf{1}$ and $\mathbf{2}$ were designed to enable coordination to lanthanides via each of the two pyridyl nitrogens and the 2,6-dicarboxylic amides. Their synthesis was achieved in a few steps and in high yield from commercially available starting materials (Scheme 1). The monoprotected 2,6-pyridinedicarboxylic acid $\mathbf{3}^{12}$ were reacted with the R and S isomers of 1-(1-naphthyl)ethylamine using standard peptide-coupling methodology to give the intermediates $\mathbf{4}$ and $\mathbf{5}$ in $\sim 80 \%$ yield, after which deprotection of the benzyl ester using $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst under $3 \mathrm{~atm} \mathrm{H}_{2}$ yielded 6 and 7 in quantitative yields. Both were reacted with 4,4'-diaminodiphenylmethane via a peptide-coupling reaction using $\mathrm{EDCI} \cdot \mathrm{HCl}$, and $\mathbf{1}$ and $\mathbf{2}$ were isolated after aqueous workup in $\sim 80 \%$ yield. The ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of $\mathbf{1}$ (Figure

[^0]1a and Figure S1 in the Supporting Information) demonstrated the presence of C_{2} symmetry, while circular dichroism (CD) spectroscopy confirmed the enantiomeric relationship of $\mathbf{1}$ and $\mathbf{2}$; the CD spectrum of 1 gave rise to two negative bands centered at 230 and 298 nm (Figure S2). Both $\mathbf{1}$ and $\mathbf{2}$ were complexed with Eu(III) triflate in a ligand/metal ratio of $3: 2$ by refluxing in MeOH or $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$ followed by precipitation upon addition to diethyl ether, giving the $\mathbf{E u}_{2}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}: \mathbf{2}_{3}$ complexes as off-white-colored powders in $\sim 50 \%$ yield; elemental analysis confirmed the formation of the desired products. The ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of $\mathbf{E u}_{2}: \mathbf{1}_{3}$ (Figure 1b) confirmed the formation of a single product with a high degree of symmetry. Moreover, $\mathbf{E u}_{2}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}: \mathbf{2}_{3}$ gave rise to identical ${ }^{1}$ H NMR spectra, demonstrating that the two were formed as a pair of enantiomers. ${ }^{13}$ This was further confirmed by CD spectroscopy (Figure S4). $\mathrm{Eu}_{2}: 1_{3}$ was characterized using ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ heteronuclear single-quantum correlation (HSQC) NMR spectroscopy (600 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) (Figures S 5 and S6), which showed that the methylene protons of the spacer were equivalent, appearing as a singlet at 4.37 ppm ; this indicates that $\mathbf{E u}_{2}: \mathbf{1}_{\mathbf{3}}$ was formed as a single, helical (rac) isomer. ${ }^{14}$ The formation of $\mathbf{E u}_{2}: \mathbf{1}_{3}$ was further analyzed by ${ }^{1} \mathrm{H}$ NMR titration $(400 \mathrm{MHz})$ of 1 with $\mathrm{Eu}(\mathrm{III})\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{3}$ in $1: 1(\mathrm{v} / \mathrm{v}) \mathrm{CD}_{3} \mathrm{CN}^{2} / \mathrm{CDCl}_{3}$. The results demonstrate chemical shift changes and gradual broadening of several resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ upon addition of 0 to 0.6 equiv of $\mathrm{Eu}(\mathrm{III})$, after which no significant changes occurred (Figure S7). This confirmed the formation of a solution species with 2:3 stoichiometry (Figure S8), in which three ligands wrap around two $\mathrm{Eu}($ III $)$ ions in an helical fashion, resulting in the formation of a nine-coordinate environment for each ion, as depicted in Scheme 1. Furthermore, we were able to determine the hydration states (q) of both $\mathbf{E u}_{2}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}: \mathbf{2}_{3}$ by measuring their Eu (III) excited-state decays in $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$, which indicated that $q \approx 0$ (Tables S 1 and S 2 in the Supporting Information) for both complexes, suggesting that each $\mathrm{Eu}(\mathrm{III})$ ion is nine-coordinated within these dimetallic helicates.

Figure 1. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of (top) $\mathbf{1}(R, R)$ and (bottom) $\mathbf{E u}_{2}: \mathbf{1}_{3}$. Pyridyl proton peaks are labeled with *.

The spectroscopic properties of $\mathbf{E u}_{2}: \mathbf{1}_{\mathbf{3}}$ and $\mathbf{E u}_{2}: \mathbf{2}_{3}$ were further investigated in $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{CH}_{3} \mathrm{CN}$, and $1: 1(\mathrm{v} / \mathrm{v}) \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CHCl}_{3}$. The absorption spectra of $\mathbf{E u}_{2}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}: \mathbf{2}_{3}$ in MeOH showed the presence of a broad band for the naphthalene moieties (Figures S9
and S10). Excitation of this band gave rise to naphthalene-centered emission with $\lambda_{\max }=340 \mathrm{~nm}$ (Figure S14). Eu(III) emission was also clearly evident upon excitation of the naphthalene antennae or the pyridyl moieties (Figures S13 and S14). The total luminescence spectrum for $\mathbf{E u}_{2}: \mathbf{2}_{3}$ (Figure 2) demonstrates the sensitization of the ${ }^{5} \mathrm{D}_{0}$ excited state by the six antennae and the deactivation to the ${ }^{7} \mathrm{~F}_{J}(J=0-4)$ states, with narrow emission bands occurring at $590,593,613,647$, and 693 nm respectively. The fluorescence excitation spectra of the antennae in MeOH and $1: 1(\mathrm{v} / \mathrm{v}) \mathrm{CH}_{3} \mathrm{CN} /$ CHCl_{3} also clearly demonstrated that both complexes successfully sensitized the ${ }^{5} \mathrm{D}_{0}$ excited state (Figures $\mathrm{S} 15-\mathrm{S} 18$). The presence of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{0}$ band (Figure 2) in the emission spectrum suggests that the local symmetry at the $\mathrm{Eu}(\mathrm{III})$ centers is C_{3} rather than D_{3}, which is the symmetry of the dimetallic helixes as a whole. However, the ${ }^{1} \mathrm{H}$ NMR spectra also suggest that D_{3} symmetry is favored on the NMR time scale. Figure 2 also shows the CPL spectra of $\mathbf{E u}_{2}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}: \mathbf{2}_{3}$, which have opposite signs and equal magnitudes, confirming the enantiomeric nature of $\mathbf{E u _ { 2 }}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}$: $\mathbf{2}_{\mathbf{3}}$, which is driven by asymmetric induction from $\mathbf{1}$ and $\mathbf{2}$. The large values of the dissymmetry factor $2 \Delta I / I$ (e.g., -0.23 for the higher-energy component of the 593 nm transition of $\mathbf{E u}_{2}: \mathbf{1}_{3}$) have the same sign and almost identical magnitude as those for the corresponding monomeric complexes previously developed by us. ${ }^{10}$ This implies not only that the absolute configurations of $\mathbf{E u}_{2}$: $\mathbf{1}_{3}$ and $\mathbf{E u}_{2}: \mathbf{2}_{3}$ are the same as those of the corresponding monomers (i.e., $\mathbf{E u}_{2}: \mathbf{1}_{\mathbf{3}}$ has the Λ, Λ and $\mathbf{E u}_{2}: \mathbf{2}_{\mathbf{3}}$ the Δ, Δ absolute configuration) but also that the degrees of twist of the ligators away from octahedral geometry must be very similar (within about $\pm 2^{\circ}$) for the dimetallic and monomeric $\mathrm{Eu}(\mathrm{III})$ complexes. Thus, the CPL spectra show that dimetallic $\mathrm{Eu}(\mathrm{III})$ triple-stranded homochiral helicates are formed in solution for $\mathbf{E u}_{2}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}: \mathbf{2}_{3} .{ }^{11}$

Figure 2. Luminescence spectrum of $\mathbf{E u}_{2}: \mathbf{2}_{\mathbf{3}}$ (black) and CPL spectra ($\times 10$) of $\mathbf{E u}_{2}: \mathbf{1}_{3}$ (blue) and $\mathbf{E u}_{2}: \mathbf{2}_{3}$ (red) in MeOH . The $\Delta J=0$ band is expanded.

The formation of $\mathbf{E u}_{2}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}: \mathbf{2}_{\mathbf{3}}$ was also investigated in 1:1 (v/v) $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$ by observing the changes in their absorption and $\mathrm{Eu}($ III $)$ emission spectra upon variation of the amount of $\mathrm{Eu}(\mathrm{III})\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{3}$ at fixed concentrations of $\mathbf{1}$ and $\mathbf{2}(10 \mu \mathrm{M})$ after 24 h of equilibration. Significant changes were observed in the absorption spectra, which were red-shifted to 320 nm (Figures S19 and S20), and in the Eu(III)-centered emission (Figures S21 and S22), which was "switched on" for both systems within the addition of ~ 0.7 equiv of $\mathrm{Eu}(\mathrm{III})$ upon formation of both $\mathbf{E u}_{2}: \mathbf{1}_{3}$ and $\mathbf{E u}_{2}$: $\mathbf{2}$. The 3:2 stoichiometry of these helicates was further confirmed using Job's method of continuous variations, where $\chi_{\text {max }}=0.6$ was determined from both the absorption (Figures S23 and S24) and the $\mathrm{Eu}(\mathrm{III})$ emission (Figure 3).

In summary, we have developed novel, enantiomerially pure dimetallic lanthanide luminescent triple-stranded helicates using $\mathrm{Eu}(\mathrm{III})$-directed synthesis. We are in the process of evaluating their properties and developing related f-based helical structures.

Figure 3. (A) Overall changes in the Eu(III) emission of 2 in $1: 1(\mathrm{v} / \mathrm{v})$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$ using Job's method of continuous variations. (B) Job's plot analyses for $\Delta J=1,2$, and 4 , showing the formation of $\mathbf{E u}_{\mathbf{2}}: \mathbf{2}_{3}$.

Acknowledgment. We thank SFI, HEA (PRTLI Cycle 3 CSCB funding), and TCD for financial support and Prof. Paul E. Kruger (University of Christchurch) and Dr. Sally Plush for their help.

Supporting Information Available: Synthesis and characterization of all novel compounds, Figures S1-S24, and Tables S1 and S2. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72. Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Chem. Soc. Rev. 2007, 30, 1705. Nitschke, J. R. Acc. Chem. Res. 2007, 40, 103. Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 371.
(2) Goldup, S. M.; Leigh, D. A.; Lusby, P. J.; McBurney, R. T.; Slawin, A. M. Z. Angew. Chem., Int. Ed. 2008, 47, 6999. Prikhod'ko, A. I.; Durola, F.; Sauvage, J. P. J. Am. Chem. Soc. 2008, 130, 448. Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chui, S.-H.; Cave, G. W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308.
(3) Deiters, E.; Song, B.; Chauvin, A. S.; Vandevyver, C. D. B.; Gumy, F.; Bunzli, J. C. G. Chem. - Eur. J. 2009, 15, 885. Leonard, J. P.; Nolan, C. B.; Stomeo, F.; Gunnlaugsson, T. Top. Curr. Chem. 2007, 281, 1. Gunnlaugsson, T.; Stomeo, F. Org. Biomol. Chem. 2007, 5, 1999. Pandya, S.; Yu, J.; Parker, D. Dalton Trans. 2006, 2757.
(4) Bünzli, J.-C. G. Acc. Chem. Res. 2006, 39, 53. Bünzli, J.-C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048.
(5) Chauvin, A. S.; Comby, S.; Song, B.; Vandevyver, C. D. B.; Bünzli, J.C. G. Chem.-Eur. J. 2008, 14, 1726. (a) Albrecht, M.; Osetska, O.; Fröhlich, R.; Bünzli, J.-C. G.; Aebischer, A.; Gumy, F.; Hamacek, J. J. Am. Chem. Soc. 2007, 129, 14178.
(6) Canard, G.; Koeller, S.; Bernardinelli, G.; Piguet, C. J. Am. Chem. Soc. 2008, 130, 1025. Riis-Johannessen, T.; Dupont, N.; Canard, G.; Bernardinelli, G.; Hauser, A.; Piguet, C. Dalton Trans. 2008, 3661. Senegas, J. M.; Koeller, S.; Bernardinelli, G.; Piguet, C. Chem. Commun. 2005, 2235.
(7) Examples include: Albrecht, M.; Liu, Y.; Zhu, S. S.; Schalley, C. A.; Fröhlich, R. Chem. Commun. 2009, 1195. Gregolinski, J.; Starynowicz, P.; Hua, K. T.; Lunkley, J. L.; Muller, G.; Lisowski, J. J. Am. Chem. Soc. 2008, 130, 17761. Hamacek, J.; Bernardinelli, G.; Filinchuk, Y. Eur. J. Inorg. Chem. 2008, 3419. Ronson, T. K.; Adams, H.; Harding, L. P.; Pope, S. J. A.; Sykes, D.; Faulkner, S.; Ward, M. D. Dalton Trans. 2007, 1006. Bonsall, S. D.; Houcheime, M.; Straus, D. A.; Muller, G. Chem. Commun. 2007, 3676. Hoffart, D. J.; Loeb, S. J. Angew. Chem., Int. Ed. 2005, 44, 901. Argent, S. P.; Adams, H.; Riis-Johannessen, T.; Jeffery, J. C.; Harding, L. P.; Mamula, O.; Ward, M. D. Inorg. Chem. 2005, 45, 3905. Bretonniere, Y.; Mazzanti, M.; Pecaut, J.; Olmstead, M. M. J. Am. Chem. Soc. 2002, 124, 9012. Bretonniere, Y.; Mazzanti, M.; Wietzke, R.; Pecaut, J. Chem. Commun. 2000, 1543. Lessmann, J. J.; Horrocks, W. D. Inorg. Chem. 2000, 39, 3114.
(8) Sénéshal-David, K.; Leonard, J. P.; Plush, S. E.; Gunnlaugsson, T. Org. Lett. 2006, 8, 2727. Sénéshal-David, K.; Pope, S. J. A.; Quinn, S.; Faulkner, S.; Gunnlaugsson, T. Inorg. Chem. 2006, 45, 10040.
(9) Massue, J.; Quinn, S. E.; Gunnlaugsson, T. J. Am. Chem. Soc. 2008, 130, 6900. Plush, S. E.; Gunnlaugsson, T. Dalton Trans. 2008, 3801. Leonard, J. P.; dos Santos, C. M. G.; Plush, S. E.; McCabe, T.; Gunnlaugsson, T. Chem. Commun. 2007, 129. Nonat, A. M.; Quinn, S. J.; Gunnlaugsson, T. Inorg. Chem. 2009, 48, 4646. Nonat, A. M.; Harte, A. J.; Sénéshal-David, Leonard, J. P.; Gunnlaugsson, T. Dalton Trans. 2009, 4703.
(10) Leonard, J. P.; Jensen, P.; McCabe, T.; O’Brien, J. E.; Peacock, R. D.; Kruger, P. E.; Gunnlaugsson, T. J. Am. Chem. Soc. 2007, 129, 10986.
(11) Albrecht, M.; Schmid, S.; Dehn, S.; Wickleder, C.; Zhang, S.; Bassett, A. P.; Pikramenou, Z.; Frohlich, R. New J. Chem. 2007, 31, 1755. Cantuel, M.; Bernardinelli, G.; Muller, G.; Riehl, J. P.; Piguet, C. Inorg. Chem. 2004, 43, 1840.
(12) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1997, 119, 10587.
(13) The $\mathrm{Tb}\left(\right.$ III) complex of $\mathbf{1}$ was also formed. The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure S3) showed the formation of a single species.
(14) $\mathbf{E u}_{2} \mathbf{L}_{3}$ can be formed either as rac isomers $(\Lambda \Lambda$ and $\Delta \Delta)$ or as a meso isomer $(\Lambda \Delta)$. In the meso form, the methylene protons would be diastereotopic and give rise to two doublets in the ${ }^{1} \mathrm{H}$ NMR spectrum. See: Goetz, S.; Kruger, P. E. Dalton Trans. 2006, 1277.

JA9032204

[^0]: \dagger Trinity College Dublin.

 * Queen's University of Belfast.
 § University of Glasgow.

